
Dan Vega - Spring Developer Advocate @Broadcom

Code Smarter, Not Harder
AI-Powered Dev Hacks for All

Will AI replace developers?

Anonymous

“AI won’t replace developers,
but developers who use AI will
replace those who don’t.”

Learn more at danvega.dev

 🧑🧑🧒🧒 Husband & Father

🏠 Cleveland

☕ Java Champion

🧑💻 Software Development 23 Years

🍃 Spring Developer Advocate

📖 Author (Soon to be)

📝 Content Creator

🐦 @therealdanvega

🏃 Running

🏌 Golf

About Me

www.bytesizedai.dev

http://www.bytesizedai.dev

What has ai done for me?

The Joy of Programming
Being a creator

What I don’t like
About programming

What is the future of software development?

Satya Nadella - Microsoft ceo

“I think what AI does quite
frankly is reduce the floor and
raise the ceiling for all of us”

Steve Wozniak, Apple co-founder

“Ai will not replace jobs, but it will
change the nature of work. Developers
who can adapt and learn new skills will
be in high demand.”

State of AI adoption

State of AI Adoption
Current State of Adoption

State of AI Adoption
How Developers Use AI

Agenda

• AI Tips & Tricks I have
incorporated in my daily
workflow

• Key Takeaways

• My hope is you walk away
from this with a few practical
tips you can take back to work

AI powered dev hacks

AI-Powered Developer Workflows

Assumptions
I’m going to make some assumptions…

• You have used some form of IDE Coding
Assistance

• GitHub Copilot

• JetBrains AI

• Cursor

• Windsurf

• v0

• Replit

Know the Risks

• Privacy & Security

• Proprietary code and data leaks

• Customer Data could be leaked

• Legal / Compliance risks around
data handling and storage

• Output Risks

• Hallucinations leading to security
issues

• Biased or inappropriate responses

Warning

#1 - learning how to talk to robots

Learn how to effectively communicate with AI

• Clear communication is key - just like with
humans

• Structure determines success - giving context,
examples and specific instructions

• Think of it as teaching, not commanding

• Bad Prompt: “Write a blog post about AI”

• Good Prompt: “Write a technical blog post
explaining neural networks to junior developers,
focusing on practical examples. Include code
samples in Python and keep it under 1,000
words.”

• Learn More: https://www.bytesizedai.dev/p/how-
to-talk-to-robots

Prompt engineering

https://www.bytesizedai.dev/p/how-to-talk-to-robots
https://www.bytesizedai.dev/p/how-to-talk-to-robots
https://www.bytesizedai.dev/p/how-to-talk-to-robots

Prompt engineering
Practical Prompt Techniques that work

•Be Specific: "Write a 500-word blog post about sustainable gardening for beginners" beats
"Write about gardening"

•Use Examples: "I want an email that sounds professional but friendly, like: 'Dear Team, I hope
this message finds you well...'"

•Give Context: "As the marketing manager for a small local business, I need to..."

•Request Formats: "Please format your response as a bulleted list" or "Use markdown headers"

•Iterate & Refine: "That's good, but can you make it more conversational and add a section
about..."

•Save What Works: Keep a collection of your most effective prompts to reuse and adapt

Prompt engineering
Finding the Right AI for Each Task

Think of It Like Working with Different Specialists

•Different AI’s have different personalities and strengths

•What works today might change tomorrow

•The perfect match depends on what you're looking for

Different AI Specializations:

•The Academic: Great with facts, research, and analysis

•The Creative: Excels at writing, brainstorming, and artistic endeavors

•The Engineer: Perfect for coding, technical documentation, and problem-solving

•The Visual Thinker: Understands images and can reason about visual content

•The Data Whiz: Makes sense of numbers, charts, and patterns

#2 - Prompting with your voice

#3 - Learning Software Development

Learning with AI
Junior Developers

• Concept Breakdown: Junior developers can use AI to break down complex
programming concepts into simpler terms, getting multiple explanations
until one clicks. For Example:

• Explain closures in JavaScript like you’re explaining it to someone who
just learned functions” then follow up with “Now explain it with a
practical example”

• Understanding Code: Walk me through this code line by line

• Learning Path Guidance: Ask for personalized learning paths

Learning with AI
Senior Developers

• Deep Dives: Senior developers can use AI to quickly understand new
technologies or advanced concepts:

• “Compare the performance implications of different state management
solutions in React”

• “Explain the architectural differences between REST and gRPC”

• Pattern Discovery: “Show me 3 different ways to implement a rate limiter in a
distributed system, with pros and cons of each approach”

• Staying Current: “What are the performance benefits of using Virtual Threads In
Java”

#4 - Reading Code

Reading Code
Code Comprehension Strategies using AI

• Paste unfamiliar code and ask:

• “Explain this code’s purpose and main functionality?”

• “What design patterns are being used here?”

• “What are the key dependencies and data flows?”

• Break down complex functions:

• “Break this function down into logical steps”

• “What are the potential side effects”

Reading code
Understanding Legacy Code

• Ask about historical context

• “What problem was this code likely trying to solve?”

• “Why might the original developer have chosen this approach”

• Identify improvement opportunities

• “What are the maintainability concerns in this code”

• “How could this be refactored using modern practices”

#5 - Documentation

Documentation
Code Documentation Generation

• Generating Class/Function/Method documentation

• Explaining complex algorithms and logic flows

• Creating usage examples and sample code

• Documenting API endpoints and parameters

Documentation
Technical Writing Assistance

• Improving clarity and consistency of existing documentation

• Helping ensure documentation follows style guides

• Suggesting better wording and explanations

• Converting technical jargon into clearer language for different audience
levels

• Converting documentation from one format to another

• Creating new Documentation

Write a README based on my repo

#6 - Building Tools

Sam Altman - Three Observations Blog Post

“People are tool-builders with an inherent
drive to understand and create, which leads
to the world getting better for all of us.”

https:!//blog.samaltman.com/three-observations

Tools
Practical Tools Developers can build with AI

• CLI tools to streamline workflows

• IDE or Text Editor Plugins

• Browser Plugins

• Reporting Tools

• Your Favorite Tool Plugins

#7 - Working with Data

Working with Data
Data Transformation and Analysis

• Transform data between formats (JSON, CSV, XML, etc…)

• Data to Code (Json Object to Java Record)

• Identify and handle missing or invalid data

• Suggest optimal data structures based on your use case

• Write data validation rules and schemas

Working with data
Generating Fake Data

• Create realistic test data that matches your schema requirements

• Generate diverse user profiles with demographic variety for UI testing

• Simulate time-series data with realistic patterns and seasonality

• Create localized content for multiple regions/languages

• Generate edge cases to stress-test your application

• Scale from dozens to millions of records on demand

• Maintain referential integrity across related data sets

Database & Query Work

• Write SQL queries for complex
operations

• Design database schemas and table
relationships

• Optimize existing queries for better
performance

• Convert between different SQL dialects
(MySQL to PostgreSQL, etc.)

• Generate database migration scripts

• Write stored procedures and triggers

Working with Data

#8 - Running Models Locally

https:!//ollama.com

https://ollama.com

https:!//openwebui.com

Open WebUI

Conclusion / Q&A

Key Takeaways
AI as a Developer Multiplier

•AI tools enhance developer capabilities rather than replace them

•Focus on using AI to automate repetitive tasks and boost productivity

•The key is knowing when and how to leverage AI effectively

Key Takeaways
Best Practices for AI Integration

•Always review and understand AI-generated code

•Maintain strict security practices with sensitive information

•Use AI as a learning tool, not just a code generator

•Start with small, well-defined tasks and scale up gradually

Key Takeaways
Practical Steps for Getting Started

•Begin with documentation and code review tasks

•Use AI for learning new technologies and concepts

• Integrate AI tools into your existing workflow gradually

•Develop a collection of reliable prompts for common tasks

Thank You
dan.vega@broadcom.com

@therealdanvega

https://www.danvega.dev

https://www.bytesizedai.dev

mailto:dan.vega@broadcom.com

